Université Moulay Ismaïl

F. S. T. Errachidia

Département de Mathématiques

A. U. 2018/2019 LST Maths Appl

Module M147

(2) Epreuve d'analyse 4 (Durée :1h30) 09 Juillet 2019 Responsable: Pr. A. Mamouni

Exercice 1

Déterminer le rayon de convergence de chacune des séries entières suivantes :

$$(1) \sum_{n=1}^{+\infty} \pi^{\sqrt{n^3 + n^2 + 5n}} x^n$$

$$(2)\sum_{n=1}^{+\infty} \pi^{E(n\sqrt{3})} x^n$$

Solution:

(1) Le rayon de convergence de la série $\sum_{n=0}^{+\infty} \pi^{\sqrt{n^3+n^2+5n}} x^n$. Prenons $a_n = \pi^{\sqrt{n^3+n^2+5n}}$ et appliquons la régle de Cauchy on obtient, $\sqrt[n]{a_n} = \pi^{\sqrt{\frac{n^3 + n^2 + 5n}{n^2}}}$, donc $\lim_{n \to +\infty} \sqrt[n]{a_n} = +\infty$, d'où R = 0.

(2) Le rayon de convergence de la série $\sum_{n=0}^{+\infty} \pi^{E(n\sqrt{3})} x^n$. Prenons $a_n = \pi^{E(n\sqrt{3})}$, appliquons la régle de Cauchy. Pour se faire on doit calculer $\lim_{n\to+\infty} \sqrt[n]{a_n}$. Tout d'abord on sait que $n\sqrt{3}-1\leq$ $E(n\sqrt{3}) \leq n\sqrt{3}$ ce qui implique $\frac{n\sqrt{3}-1}{n} \leq \frac{E(n\sqrt{3})}{n} \leq \sqrt{3}$. Alors $\lim_{n\to+\infty} \sqrt[n]{a_n} = \pi^{\sqrt{3}}$ ainsi que $R = \pi^{-\sqrt{3}}.$

Exercice 2

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur [0,1] par :

$$f_n(x) = \frac{2^n x}{1 + n2^n x^2}$$

- 1. Etudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ sur [0,1].
- 2. Calculer $||f_n||_{\infty}$, pour $n \in \mathbb{N}^*$.
- 3. La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-elle uniforme sur [0,1]?
- 4. Soit $\eta \in]0,1[$, montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur $[\eta,1]$.

Solution:

(1) Etudions la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur l'intervalle [0,1].

Si x = 0, alors $f_n(0) = 0$. D'où $\lim_{n \to +\infty} f_n(0) = 0$. Si $x \neq 0$, alors $\frac{2^n x}{1 + n2^n x^2} \sim_{+\infty} \frac{1}{nx}$. Donc $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{1}{nx} = 0$. On conclut que $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers la fonction nulle sur [0,1].

- (2) Calculons $||f_n||_{\infty}$: On a f_n est continue sur [0,1] et dérivable sur [0,1] donc $|f_n|$ atteint sa borne supérieure en un point x_0^n et vérifie $f_n'(x_0^n) = 0$. Un calcul simple donne $||f_n||_{\infty} = \frac{2^{\frac{\gamma}{2}}}{2\sqrt{n}}$
- (3) La convergence n'est pas uniforme, sinon la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers sa limite simple qui est la fonction nulle. On obtient donc $0 = \lim_{n \to +\infty} \|f_n - 0\|_{\infty} = \lim_{n \to +\infty} \frac{2^{\frac{n}{2}}}{2\sqrt{n}} = +\infty$, contradiction. D'où la convergence de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ n'est pas uniforme.

(4) Montrons que $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur $[\eta, 1]$. Tout d'abord $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $[\eta, 1]$ vers la fonction nulle et on a de plus

$$||f_n - 0||_{\infty} = ||f_n||_{\infty} = Sup_{[\eta, 1]}f_n(x) \le \frac{2^n}{1 + n2^n\eta^2} \le \frac{1}{n\eta^2}$$

On peut conclure facilement par passage à la limite.

Exercice 3

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique impaire et définie par : $f(x) = e^x$ pour tout $x \in]0, \pi]$.

- 1. Montrer que f admet une série de Fourier convergente.
- 2. Calculer les coefficients de Fourier a_n et b_n de la fonction f.
- 3. Etudier la convergence uniforme de la série de Fourier de f.

Solution:

- (1) On a f est une fonction dérivable par morceaux et 2π -périodique donc d'après Thérème de Dirichlet elle admet une série de Fourier convergeant simplement.
- (2) On a f est une function impaire, alors $a_n = 0$ pour tout $n \in \mathbb{N}$ et $b_0 = 0$ par convention. Soit $n \ge 1$, alors

Solt
$$n \ge 1$$
, alors $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_0^{\pi} e^x \sin(nx) dx = \frac{2}{\pi} I_n$ où $I_n = \int_0^{\pi} e^x \sin(nx) dx$. Calculons I_n

On a:
$$I_n = \int_0^\pi e^x \sin(nx) dx = [e^x \sin(nx)]_0^\pi - n \int_0^\pi e^x \cos(nx) dx = -n[e^x \cos(nx)]_0^\pi - n^2 I_n \text{ d'où } I_n = \frac{n\pi}{2(n^2+1)} (1-(-1)^n e^\pi)$$

(3) On a f impaire donc f(0) = 0. Si la série de Fourier associée à la fonction f converge uniformément alors elle est continue et par passage à la limite en $x_0 = 0$ on trouve une contradiction. Conclusion la série de Fourier de la fonction f ne converge pas uniformément.

Exercice 4

Soit $R \in \mathbb{R}^+ \setminus \{0,1\}$ et soit $C = \{z \in \mathbb{C}/|z| = R\}$ un chemin fermé orienté dans le sens positif. Selon les valeurs de R, calculer l'intégrale

$$\int_C \frac{z^2 + 3}{z^3 + z^2 + z + 1} dz.$$

Solution : Considérons la fonction $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = \frac{z^2 + 3}{z^3 + z^2 + z + 1}$. On a $z^3 + z^2 + z + 1 = z^2(z+1) + (z+1) = (z+1)(z^2+1) = (z+1)(z+i)(z-i)$, donc les pôles de la fonction f sont $\{i, -i, -1\}$. On peut constater facilement que f est holomorphe sur \mathbb{C} à l'exception de ses trois pôles qui sont des singularités isolantes. Le Théorèmes des résidus est applicable. on a aussi:

$$Res(f, -i) = -\frac{1-i}{2}$$

 $Res(f, i) = -\frac{1+i}{2}$
 $Res(f, -1) = 2$

Si R<1, on obtient $\int_C \frac{z^2+3}{z^3+z^2+z+1}dz=0$ (car le chemin ne contient aucun pôle). Si R>1, on obtient (dans ce cas le chemin contient les trois pôles) $\int_C \frac{z^2+3}{z^3+z^2+z+1}dz=2\pi i(Res(f,i)+Res(f,-i)+Res(f,-1))=2\pi i$

$$\int_C \frac{z^2 + 3}{z^3 + z^2 + z + 1} dz = 2\pi i (Res(f, i) + Res(f, -i) + Res(f, -1)) = 2\pi i$$