Série de Travaux-Dirigés : 3 Méthode des différences finies pour les EDP d'évolution

Exercice 1 (Approximation par différences finies de l'équation de la chaleur)

On considère l'équation de la chaleur en dimension 1 d'espace, avec des conditions de Dirichlet homogènes :

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0 & \text{pour } (x,t) \in]0,1[\times]0,T[,\\ u(0,t) = u(1,t) = 0 & \text{pour } t \in]0,T[,\\ u(x,t=0) = u_0(x) & \text{pour } x \in]0,1[, \end{cases} \tag{1}$$

où u(x,t) représente la température au point x et au temps t. On admettra le théorème d'existence et d'unicité suivant :

Théorème 1 Si $u_0 \in C(]0,1[;\mathbb{R})$ alors il existe une unique fonction $u \in C^2(]0,1[\times]0,T[;\mathbb{R}) \cap C([0,1]\times[0,T];\mathbb{R})$ qui vérifie (1). On a même $u \in C^{\infty}(]0,1[\times]0,T[;\mathbb{R})$: c'est l'effet régularisant de l'équation de la chaleur.

Théorème 2 (Principe du maximum) Sous les hypothèses précédentes, soit u la solution de (1).

- 1. Si $u_0(x) \ge 0$ pour tout $x \in [0,1]$, alors $u(x,t) \ge 0$, pour tout t > 0 et pour tout $x \in [0,1]$.
- 2. $||u||_{L^{\infty}(]0,1[\times]0,T[)} \le ||u_0||_{L^{\infty}(]0,1[)}$.

On va discrétiser en différences finies ce problème. Soit $h=\frac{1}{N+1}$ le pas d'espace et $k=\frac{T}{M+1}$ le pas de temps. On pose $t_n=nk$ et $x_i=ih$. Les inconnues discrètes sont alors notées u_i^n . On choisit d'approximer en temps par la méthode d'Euler explicite. On approche $u_t(x_i,t_n)$ par le quotient différentiel,

$$\frac{u(x_i, t_{n+1}) - u(x_i, t_n)}{k}$$

et la dérivées en espace $-u_{xx}(x_i, t_n)$ par le quotient différentiel,

$$-\frac{u(x_{i+1},t_n)-2u(x_i,t_n)+u(x_{i-1},t_n)}{h^2}.$$

- 1. Ecrire le schéma obtenu. Il est dit *explicite* car il donne u_i^{n+1} de manière explicite en fonction de $(u_i^n)_{i=1,\cdots,N}$.
- 2. Consistance du schéma. Soit $\bar{u}_i^n = u(x_i, t_n)$ la valeur exacte de la solution en x_i et t_n . L'erreur de consistance R_i^n en (x_i, t_n) peut s'écrire comme la somme des erreurs de consistance en temps et en espace. La formuler. Montrer que le schéma est consistant d'ordre 1 en temps et 2 en espace.
- 3. **Stabilité.** On va prouver le résultat suivant :

Proposition 1 Si la condition de stabilité $\lambda = \frac{k}{h^2} \le \frac{1}{2}$ est vérifiée alors le schéma est L^{∞} -stable au sens où

$$\max_{\substack{i=1,\cdots,N\\n=1,\cdots,M+1}} |u_i^n| \le ||u_0||_{\infty}.$$

- (a) Soit $M^n = \max_{i=1,\dots,N} u_i^n$. Montrer que $M^{n+1} \leq M^n$.
- **(b)** Soit $m^n = \min_{i=1,\dots,N} u_i^n$. Montrer que $m^{n+1} \ge m^n$.
- (c) En déduire le résultat de stabilité.

4. **Convergence.** Soit u la solution de (1) et $(u_i^n)_{i=1,\cdots,N}^{n=1,\cdots,M+1}$ la solution du problème discret. On appelle erreur de discrétisation au point (x_i,t_n) la quantité $e_i^n=\bar{u}_i^n-u_i^n$. Montrer le résultat de convergence suivant :

Théorème 3 Sous les hypothèses précédentes, il existe $C \in \mathbb{R}^+$ ne dépendant que de u tel que

$$||e^{n+1}||_{\infty} \le ||e^0||_{\infty} + TC(k+h^2) \quad \forall n = 0, \dots, M.$$

Ainsi, si $||e^0||_{\infty} = 0$ alors $\max_{i=1,\dots,N} |e_i^n|$ tend vers 0 lorsque k et h tendent vers 0 pour tout $n=1,\dots,M+1$. Le schéma est donc convergent.

Exercice 2 (Discrétisation de l'équation d'advection-diffusion)

Soient $\alpha > 0, \mu > 0, T > 0$ et $u_0 : \mathbb{R} \to \mathbb{R}$. On s'intéresse au problème suivant :

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) + \alpha \frac{\partial u}{\partial x}(x,t) - \mu \frac{\partial^2 u}{\partial x^2}(x,t) = 0 & \text{pour } (x,t) \in]0,1[\times]0,T[,\\ u(0,t) = u(1,t) = 0 & \text{pour } t \in]0,T[,\\ u(x,t=0) = u_0(x) & \text{pour } x \in]0,1[. \end{cases}$$

$$(2)$$

On suppose qu'il existe $u \in C^4([0,1] \times [0,T])$ solution classique de (2) (noter que ceci implique $u_0(0) = u_0(1) = 0$). On pose $A = \min\{u_0(x), x \in [0,1]\}$ et $B = \max\{u_0(x), x \in [0,1]\}$ (noter que $A \le 0 \le B$). On discrétise le problème (2). On reprend les notations du cours. Soient $h = \frac{1}{N+1}$ et $k = \frac{1}{M+1}$ ($N, M \in \mathbb{N}^*$).

1. Schéma explicite décentré : Pour approcher la solution u de (2), on considère le schéma suivant :

$$\frac{u_i^{n+1} - u_i^n}{k} + \alpha \frac{u_i^n - u_{i-1}^n}{h} - \mu \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} = 0, \quad i = 1, \dots, N, \quad n = 0, \dots, M,
u_i^0 = u_0(x_i), \qquad i = 1, \dots, N,
u_0^n = u_{N+1}^n = 0, \qquad n = 0, \dots, M+1.$$
(3)

On pose $\bar{u}_i^n = u(ih, nk)$ pour $i = 0, \dots, N+1$ et $n = 0, \dots, M+1$.

- (a) Consistance. Montrer que l'erreur de consistance du schéma (3) est majorée par $C_1(k+h)$, où C_1 ne dépend que de u, T, α et μ .
- (b) Stabilité. Sous quelle condition sur k et h (cette condition peut dépendre de α et μ) a-t-on $A \leq u_i^n \leq B$ pour tout $i \in \{0, \cdots, N+1\}$ et tout $n \in \{0, \cdots, M+1\}$? Sous cette condition, en déduire $\|u^n\|_{\infty} \leq \|u_0\|_{\infty}$ pour tout $n \in \{0, \cdots, M+1\}$ (avec $\|u^n\|_{\infty} = \max\{|u_i^n|, i \in \{0, \cdots, N+1\}\}$).
- (c) Estimation d'erreur. On pose $e_i^n = \bar{u}_i^n u_i^n$. Sous la condition sur k et h trouvée précédemment, montrer que $|e_i^n| \leq C_2(k+h)$ pour tout $i \in \{0, \cdots, N+1\}$ et tout $n \in \{0, \cdots, M+1\}$ avec C_2 ne dépendant que de u, T, α et μ .
- 2. Schéma explicite centré : On change dans le schéma (3) la quantité $\alpha \frac{u_i^n u_{i-1}^n}{b}$ par $\alpha \frac{u_{i+1}^n u_{i-1}^n}{2b}$.
 - (a) Consistance. Montrer que l'erreur de consistance est maintenant majorée par $C_3(k+h^2)$, où C_3 ne dépend que de u, T, α et μ .
 - (b) Reprendre les questions de stabilité et d'estimation d'erreur du schéma (3).