cours en ligne Sites.google.com/site/saborpcmath/ par whatsapp: 0638148874 FACEBOOK: SABOR PC

Université Cadi Ayyad Faculté des Sciences et Techniques, Marrakech Département de Mathématiques Année 2020 - 2021 Filière MIPC Responsable : A. Ellabib

Module Analyse 1 Série 2

Exercice 1:

1. Soit (u_n) une suite numérique de terme général $u_n = \frac{7n-1}{2n+3}$, montrer à l'aide de la définition que (u_n) tend vers $\frac{7}{2}$.

2. Soit (u_n) une suite numérique de terme général $u_n = \frac{8n-3}{3n+4}$, montrer à l'aide de la définition que (u_n) tend vers $\frac{8}{3}$.

Exercice 2 : Étudier la convergence des suites de terme général u_n défini par :

1.
$$u_n = \cos\left(\left(n + \frac{1}{n}\right)\pi\right)$$
 2. $u_n = n - \sqrt{n^2 - n}$ 3. $u_n = \frac{n^2 \cos(n\pi)}{(-2)^n (n^3 + 6)}$

4.
$$u_n = \frac{(-1)^n}{1+\sqrt{n}}$$
 5. $u_n = \sqrt{n} - E(\sqrt{n})$ 6. $u_n = \left(5\sin\left(\frac{1}{n^2}\right) + \frac{1}{5}\cos(n)\right)^n$.

Exercice 3 : Soit (u_n) une suite réelle. Montrer que si les suites extraites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent alors la suite (u_n) converge.

Exercice 4 : 1. Pour tout entier $n \ge 1$, posons $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$. Montrer que pour tout $n \ge 1$ on a $u_n \ge \sqrt{n}$. En déduire la limite de la suite (u_n) .

2. Encadrer la suite (u_n) définie par $\forall n \in \mathbb{N}^*$ $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$. En déduire que la suite (u_n) est convergente et calculer sa limite.

Exercice 5 : Montrer que les suites (u_n) et (v_n) définies par

1.
$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$ 2. $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n!}$ sont adjacentes.

Exercice 6 : Soit (u_n) la suite définie par $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$

1. Montrer que
$$\forall p \geq q \in \mathbb{N}$$
 $|u_p - u_q| \geq \frac{p - q}{\sqrt{p}}$. 2. (u_n) est-elle de Cauchy?

Exercice 7 : Soit (v_n) une suite réelle décroissante, de limite 0. Soit (u_n) la suite définie par $\forall n \in \mathbb{N}$ $u_n = \sum_{k=1}^{n} (-1)^k v_k$. Montrer que (u_n) est une suite convergente.

Exercice 8 : Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles fermés, bornés, emboités avec $I_n=[a_n,b_n]$ et a_n,b_n sont deux suites réelles avec $a_n\leq b_n$. Montrer que $\cap_{n\in\mathbb{N}}I_n\neq\emptyset$.

Université Cadi Ayyad

Année universitaire 2020 - 2021

Faculté des Sciences et Techniques

Responsable : Abdellatif Ellabib

Département de Mathématiques

Filière : MIPC Semestre 1

Module Analyse 1

Corrigé de la série d'exercices N°2

 $1^{\grave{e}re}$ partie

Corrigé Exercices N°1, N°2, N°3 et N°4

Exercice 1. 1. Soit (u_n) une suite numérique de terme général $u_n = \frac{7n-1}{2n+3}$, montrer à l'aide de la définition que (u_n) tend vers $\frac{7}{2}$.

- 2. Soit (u_n) une suite numérique de terme général $u_n = \frac{8n-3}{3n+4}$, montrer à l'aide de la définition que (u_n) tend vers $\frac{8}{3}$.
- Correction d'exercice N° 1. 1. Soit $\varepsilon > 0$, posons $N = E\left(\frac{23 6\varepsilon}{4\varepsilon}\right) + 1$.

Soit
$$n > N$$
 donc $n > \frac{23 - 6\varepsilon}{4\varepsilon}$

alors
$$4n > \frac{23}{\varepsilon} - 6$$
, d'où $\frac{23}{4n+6} < \varepsilon$ par suite $\left| \frac{7n-1}{2n+3} - \frac{7}{2} \right| < \varepsilon$.

Donc
$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \left| u_n - \frac{7}{2} \right| < \varepsilon$$
, alors (u_n) converge vers $\frac{7}{2}$.

2. Soit $\varepsilon > 0$, posons $N = E\left(\frac{41 - 12\varepsilon}{9\varepsilon}\right) + 1$.

Soit
$$n > N$$
, donc $n > \frac{41 - 12\varepsilon}{9\varepsilon}$, alors $9n > \frac{41}{\varepsilon} - 12$,

alors
$$\frac{41}{9n+12} < \varepsilon$$
, par suite $\left| \frac{8n-3}{3n+4} - \frac{8}{3} \right| < \varepsilon$.

Donc
$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \left| u_n - \frac{8}{3} \right| < \varepsilon$$
, alors (u_n) converge vers $\frac{8}{3}$.

Exercice 2. Étudier la convergence des suites de terme général u_n défini par :

1.
$$u_n = \cos\left(\left(n + \frac{1}{n}\right)\pi\right)$$
 2. $u_n = n - \sqrt{n^2 - n}$ 3. $u_n = \frac{n^2 \cos(n\pi)}{(-2)^n (n^3 + 6)}$
4. $u_n = \frac{(-1)^n}{1 + \sqrt{n}}$ 5. $u_n = \sqrt{n} - E(\sqrt{n})$ 6. $u_n = \left(5\sin\left(\frac{1}{n^2}\right) + \frac{1}{5}\cos(n)\right)^n$.

Correction d'exercice N° 2. 1.
$$u_n = \cos\left(\left(n + \frac{1}{n}\right)\pi\right)$$
.

Alors
$$u_{2n} = \cos\left(2n\pi + \frac{\pi}{2n}\right) = \cos\left(\frac{\pi}{2n}\right)$$
 d'où $\lim_{n \to +\infty} u_{2n} = 1$.

D'autre part
$$u_{2n+1} = \cos\left((2n+1)\pi + \frac{\pi}{2n+1}\right) = \cos\left(\pi + \frac{\pi}{2n+1}\right)$$

d'où
$$\lim_{n \to +\infty} u_{2n+1} = -1$$
. Alors on obtient que $\lim_{n \to +\infty} u_{2n+1} \neq \lim_{n \to +\infty} u_{2n}$.

Par conséquent (u_n) n'est pas une suite convergente.

2.
$$u_n = n - \sqrt{n^2 - n}$$
, on a $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n - \sqrt{n^2 - n} = \lim_{n \to +\infty} \frac{n^2 - n^2 + n}{n + \sqrt{n^2 - n}}$

Alors
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{n(1 + \sqrt{1 - \frac{1}{n}})} = \frac{1}{2}.$$

Finalement (u_n) converge vers $\frac{1}{2}$.

3. Soit
$$u_n = \frac{n^2 cos(n\pi)}{(-2)^n (n^3 + 6)}$$
, on a $|u_n| \le \frac{n^2}{2^n (n^3 + 6)}$, or $\lim_{n \to +\infty} \frac{n^2}{2^n (n^3 + 6)} = 0$.

D'où
$$\lim_{n\to+\infty} u_n = 0$$

Par suite (u_n) converge vers 0.

4. Soit
$$u_n = \frac{(-1)^n}{1 + \sqrt{n}}$$
. On a

$$\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} \frac{1}{1 + \sqrt{2n}} = 0$$

et
$$\lim_{n \to +\infty} u_{2n+1} = \lim_{n \to +\infty} \frac{-1}{1 + \sqrt{2n+1}} = 0$$

donc
$$\lim_{n\to+\infty} u_{2n} = \lim_{n\to+\infty} u_{2n+1} = 0.$$

Alors (u_n) converge vers 0.

5. Considèrons
$$u_n = \sqrt{n} - E(\sqrt{n})$$
.

On a (u_{n^2}) est une sous-suite de (u_n) et $u_{n^2} = 0$ alors $\lim_{n \to +\infty} u_{n^2} = 0$.

cours en ligne

Sites.google.com/site/saborpcmath/ par whatsapp: 0638148874 FACEBOOK: SABOR PC

D'autre part, on a $n^2 \le n^2 + 2n \le n^2 + 2n + 1 = (n+1)^2$.

Donc
$$n \leq \sqrt{n^2 + 2n} \leq (n+1)$$
, d'où $E(\sqrt{n^2 + 2n}) = n$

 (u_{n^2+2n}) est une suite extraite de (u_n) , et on a alors

$$\lim_{n \to +\infty} u_{n^2+2n} = \lim_{n \to +\infty} \left(\sqrt{n^2 + 2n} - E(\sqrt{n^2 + 2n}) \right)$$

$$= \lim_{n \to +\infty} \left(\sqrt{n^2 + 2n} - n \right)$$

$$= \lim_{n \to +\infty} \frac{n^2 + 2n - n^2}{\sqrt{n^2 + 2n} + n}$$

$$= \lim_{n \to +\infty} \frac{2n}{n \left(\sqrt{1 + \frac{2}{n}} + 1 \right)}$$

$$= 1.$$

D'où
$$\lim_{n\to+\infty} u_{n^2} \neq \lim_{n\to+\infty} u_{n^2+2n}$$
.

Alors (u_n) n'est pas une suite convergente.

6. Soit
$$u_n = \left(5\sin\left(\frac{1}{n^2}\right) + \frac{1}{5}\cos(n)\right)^n$$
. On a $\lim_{n \to +\infty} \sin\left(\frac{1}{n^2}\right) = 0$ d'où $\exists N \in \mathbb{N} \quad \forall n > N \quad \left|\sin\left(\frac{1}{n^2}\right)\right| < \frac{1}{25}$ d'où $\exists N \in \mathbb{N} \quad \forall n > N \quad |u_n| < \left(\frac{2}{5}\right)^n$, car $|\cos(n)| \le 1$. Comme $\left(\frac{2}{5}\right)^n$ converge vers 0 car $0 < \frac{2}{5} < 1$ d'où (u_n) converge vers 0 .

Exercice 3. Soit (u_n) une suite réelle. Montrer que si les suites extraites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent alors la suite (u_n) converge.

Correction d'exercice N° 3. Supposons que (u_{2n}) converge vers l_1 , (u_{2n+1}) converge vers l_2 et (u_{3n}) converge vers l_3 . Montrons que $l_1 = l_2$.

On a (u_{6n}) est une suite extraite de (u_{2n}) , car 6n = 3(2n) donc (u_{6n}) converge vers l_1 .

D'autre part (u_{6n}) est une suite extraite de (u_{3n}) , car 6n = 2(3n) donc (u_{6n}) converge vers l_3 .

Alors

$$\lim_{n \to +\infty} u_{6n} = l_1 \quad \text{et} \quad \lim_{n \to +\infty} u_{6n} = l_3$$

par suite $l_1 = l_3$.

Maintenant (u_{6n+3}) est une suite extraite de (u_{2n+1}) , car 6n+3=3(2n+1) donc (u_{6n+3}) converge vers l_2 .

De plus (u_{6n+3}) est une suite extraite de (u_{3n}) , car 6n = 3(2n+1) donc (u_{6n+3}) converge vers l_3 .

Alors

$$\lim_{n \to +\infty} u_{6n+3} = l_2 \quad \text{et} \quad \lim_{n \to +\infty} u_{6n+3} = l_3$$

par suite $l_2 = l_3$, il s'en suit que $l_1 = l_2$.

Finalement (u_n) est une suite convergente.

Exercice 4. Pour tout entier $n \ge 1$, posons $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$. Montrer que pour tout $n \ge 1$ on a $u_n \ge \sqrt{n}$. En déduire la limite de la suite (u_n) .

2. Encadrer la suite (u_n) définie par $\forall n \in \mathbb{N}^*$ $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$. En déduire que la suite (u_n) est convergente et calculer sa limite.

Correction d'exercice N° 4. 1. Soit $n \ge 1$, posons $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

Soit $k \in \{1, \dots, n\}$ donc

$$1 \le \sqrt{k} \le \sqrt{n}$$

alors

$$\frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{k}}$$

cours en ligne Sites.google.com/site/saborpcmath/

par whatsapp: 0638148874 FACEBOOK: SABOR PC

d'où

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n}} \le \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

alors

$$\frac{n}{\sqrt{n}} \le \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

donc

$$\sqrt{n} \le \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

comme $\lim_{n\to+\infty} \sqrt{n} = +\infty$ alors $\lim_{n\to+\infty} u_n = +\infty$

2. Soit
$$n \in \mathbb{N}^*$$
, $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$

alors
$$\forall k \in \{1, \dots, n\} \quad 1 \le k \le n$$

donc
$$\forall k \in \{1, ..., n\}$$
 $n^2 + 1 \le n^2 + k \le n^2 + n$

d'où
$$\forall k \in \{1, \dots, n\}$$
 $\frac{1}{n^2 + n} \le \frac{1}{n^2 + k} \le \frac{1}{n^2 + 1}$

donc
$$\sum_{k=1}^{n} \frac{n}{n^2 + n} \le \sum_{k=1}^{n} \frac{n}{n^2 + k} \le \sum_{k=1}^{n} \frac{n}{n^2 + 1}$$

alors
$$\frac{n}{n^2 + n} \le u_n \le \frac{n^2}{n^2 + 1}$$

Posons maintenant
$$v_n = \frac{n}{n^2 + n}$$
 et $w_n = \frac{n}{n^2 + 1}$,

on a alors $v_n \leq u_n \leq w_n$ et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = 1$, donc (v_n) et (w_n) sont convergentes.

Par suite (u_n) est une suite convergente, de plus on a

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = 1.$$