

الامتحان الوطني الموحد للبكالوريا المسالك الدولية — خيار أنجليزية

+5.7M.74+ | MCYOYYO +6.0-10-09+ | \$30.XC8 | 1-68.00 A \$30.XXXX X+18.308 A A \$30.XXXX & ANNX-10 ANNO08 A

الدورة العادية 2018 -الموضوع-

NS 22E

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار أنجليزية	الشعبة أو المسلك

GENERAL INSTRUCTIONS

- √ The use of non- programmable calculator is allowed;
- √ The exercises can be treated in the preferred order by the candidate;
- ✓ The use of red color when writing solutions is to be avoided.

COMPONENTS OF THE EXAM

✓ The exam consists of three exercises and a problem , independent of each other according to the fields as follows:

Exercise 1	Geometry in space	3 points
Exercise 2	Complex numbers	3 points
Exercise 3	Calculating probabilities	3 points
Problem	Study of numerical function, calculating integrals and numerical sequences	11 points

الصفحة	
$\overline{}$. 2
4	<u> </u>

NS22E

الامتحان الوطري الموحد للبكالوريا – الحورة التعاطية 2018 – الموضوع	
– ماحة: الرياضيات — مسلك علوم الحياة والأرض ومسلك العلوم الغيريائية — حيار أنجليرية	

Exercise 1: (3 points)

In the space referred to an orthonormal direct coordinate system $(O, \vec{i}, \vec{j}, \vec{k})$, we consider the points $A(0,\,-2\,,-2)$, $B(1,\,-2,-4)$ and $C(-3\,,-1\,,\,2)$

- 1) Show that $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$ and deduce that 2x + 2y + z + 6 = 0 is a cartesian equation 1 of the plane (ABC)
 - 2) Let (S) the sphere wich an equation is $x^2 + y^2 + z^2 2x 2z 23 = 0$
- Verify that the sphere (S) has the center $\Omega(1,0,1)$ and the radius R=50.5
- x = 1 + 2t3) a) Verify that $\{y=2t \ | \ ; (t\in \square) \}$ is a parametric equations of the line (Δ) passing through the 0.25

point Ω and perpendicular to the plane (ABC)

- 0.5 b) Determine the coordinates of H the point of intersection of the line (Δ) and the plane (ABC)
- 0.75 4) Verify that $d(\Omega, (ABC)) = 3$, and then show that the plane (ABC) intersects the sphere (S)along a circle of radius 4 wich the center will be determined.

Exercise 2: (3 points)

- 1) Solve in the set of complex numbers \Box the equation $2z^2 + 2z + 5 = 0$ 0.75
 - 2) In the complex plane referred to an orthonormal direct coordinate system $(O,ec{u}\,,ec{v})$, we consider the rotation R with center O and angle $\frac{2\pi}{2}$
- a) Write in trigonometric form the complex number $d = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$ 0.25
- b) Let the point A of affix $a = \frac{-1}{2} + \frac{3}{2}i$ and the point B image of A by the rotation R0.5 Let b the affix of the point B , show that b = d.a
 - 3) Let t the translation with vector OA and the point C the image of B by t and c the affix of C
- a) Verify that c=b+a and deduce that $c=a\left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)$ (you can use the question 2) b) 0.75
- b) Determine $\arg\left(\frac{c}{a}\right)$ and deduce that the triangle OAC is equilateral. 0.75

0.5

1

0.75

NS22E

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – الموضوع – مادة: الرياضيات – مسلك علوم الحياة والأرض ومسلك العلوم الغيزيائية – حيار أنجليزية

Exercise 3 : (3 points)

An urn contains 9 balls, indistinguishable by touch: five red balls carrying the numbers

 $1\ ;\ 1\ ;\ 2\ ;\ 2\ and\ \underline{four\ white\ balls}$ carrying the numbers $\ 1\ ;\ 2\ ;\ 2\ ;\ 2$

We consider the following experiment: we draw randomly and simultaneously three balls from the urn. We consider the events:

A: "The three balls drawn are of the same color"

B: " The three balls drawn carry the same number "

C: "The three balls drawn are of the same color and carry the same number "

1.5 1) Show that $p(A) = \frac{1}{6}$, $p(B) = \frac{1}{4}$ and $p(C) = \frac{1}{42}$

2) We repeat the previous experiment three times with returning the three balls drawn to the urn after each draw, and we consider $\,X\,$ the random variable equal to the number of times of the realization of the event $\,A\,$.

a) Determine the parameters of the binomial random variable $\, X \,$

b) Show that $p(X = 1) = \frac{25}{72}$ and calculate p(X = 2)

Problem: (11 points)

I – We consider the numerical function g defined on IR by $g(x) = e^x - x^2 + 3x - 1$

The table beside is the table of variations of the function $\,g\,$

X	-8 +8
g'(x)	+
g(x)	_∞ +∞

- **0.25 1)** Verify that g(0) = 0
- 0.5 2) Determine the sign of g(x) on each of the two intervals $]-\infty,0]$ and $[0,+\infty[$
 - II We consider the numerical function f defined on IR by $f(x) = (x^2 x) e^{-x} + x$ and let (C) the curve of f in an orthonormal coordinate system $\left(O, \vec{i}, \vec{j}\right)$ (unit: 1cm)
- **0.5** 1) a) Verify that $f(x) = \frac{x^2}{e^x} \frac{x}{e^x} + x$ for every x on IR and then show that $\lim_{x \to +\infty} f(x) = +\infty$
 - b) Calculate $\lim_{x\to +\infty} (f(x)-x)$ and then deduce that (C) admits an asymptote (D) at $+\infty$ wich equation is y=x
- 0.5 c) Verify that $f(x) = \frac{x^2 x + xe^x}{e^x}$ for every x on IR, and then calculate $\lim_{x \to -\infty} f(x)$
- 0.5 d) Show that $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$ and then interpret geometrically the obtained result

لصفحة	
4	
4	╮ I

NS22E

الامتحان الوطني الموحد للبكالوريا – الحورة العاحية 2018 – الموضوع – ماحة: الرياضيات — مساك علوم الحياة والأرض ومسلك العلوم الغيزيائية — خيار أنجليزية

.*-14 _

- 0.25 2) a) Verify that f(x) x and $x^2 x$ have the same sign for every x on IR
- 0.5 b) Deduce that (C) is above (D) on each of the intervals $]-\infty,0]$ and $[1,+\infty[$, And below (D) on the interval [0,1]
- **0.75 3) a) Show that** $f'(x) = g(x) e^{-x}$ for every x on IR
- 0.5 b) Deduce that the function f is decreasing on $]-\infty,0]$ and increasing on $[0,+\infty[$
- 0.25 c) Set up the table of variations of the function f
- **0.25** 4) a) Verify that for every x on IR, $f''(x) = (x^2 5x + 4)e^{-x}$
- 0.5 b) Deduce that the curve (C) admits two inflection points of respective abscissae 1 and 4
- 5) Sketch the line (D) and the curve (C) in the same system coordinate $\left(O,\vec{i},\vec{j}\right)$ (we take $f(4)\approx 4,2$)
- 6) a) Show that the function $H: x \mapsto (x^2 + 2x + 2)e^{-x}$ is a primitive of the function $h: x \mapsto -x^2 e^{-x}$ on IR , and then deduce that $\int_0^1 x^2 e^{-x} dx = \frac{2e-5}{e}$
- 0.75 b) Using an integration by parts, show that $\int_0^1 xe^{-x} dx = \frac{e-2}{e}$
- c) Calculate, in cm^2 , the area enclosed between the curve (C) , the line (D) , and the lines of equations x=0 and x=1
 - III- We consider the numerical sequence (u_n) defined by

$$u_0 = \frac{1}{2}$$
 and $u_{n+1} = f(u_n)$ for every natural number n

- **0.75** 1) Show that $0 \le u_n \le 1$ for every natural number n (you can use the result of the question II-3)b)
- **0.5** 2) Show that the sequence (u_n) is decreasing .
- 0.75 3) Deduce that (u_n) is convergent and determine its limit.