

GENERAL INSTRUCTIONS

- ✓ The use of non- programmable calculator is allowed;
- ✓ The exercises can be treated in the preferred order by the candidate;
- ✓ The use of red color when writing solutions is to be avoided.

COMPONENTS OF THE EXAM

The exam consists of three exercises and a problem , independent of each other according to the fields as follows :

Exercise 1	numerical sequences	4 points
Exercise 2	Complex numbers	5 points
Exercise 3	Limits, differentiability and calculating integrals	4 points
Problem	Study of numerical function	7 points

- \checkmark \overline{z} denotes the conjugate of the complex number z
- ✓ In denotes the Napierian logarithm function

7 . 11			
2	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية		
4	- ماده: الرياضيات- شعبه العلوم النجريبية مسلك علوم الحياه والارض ومسلك العلوم الفيريانية (خيار إنجليزية)		
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	Exercise 1: (4 points)		
	Let (u_n) be the numerical sequence defined by $u_0 = \frac{3}{2}$ and $u_{n+1} = \frac{2u_n}{2u_n + 5}$ for every natural		
	number n		
0.25	1) calculate u_1		
0.5	2) Show by induction that $u_n > 0$ for every natural number n		
	3) a) Show that: $0 < u_{n+1} \le \frac{2}{5}u_n$; for every natural number n		
1	then deduce that, $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ for every natural number n .		
0.5	b) Calculate $\lim u_n$		
	4) we consider the numerical sequence (v_n) defined by $v_n = \frac{4u_n}{2u_n + 3}$ for every natural number n		
0.75	a) Show that (v_n) is a geometrical sequence of reason $\frac{2}{5}$		
1	b) Determine v_n in terms of n therefore deduce u_n in terms of n for every natural number n .		
	Exercise 2: (5 points)		
	1) In the set of complex numbers \Box we consider the equation (E) : $z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$		
0.5	a) Verify that the discriminant of the equation (E) is $\Delta = -4(\sqrt{6} - \sqrt{2})^2$		
1	b) Deduce the solutions of equation (E) .		
	2) Let the complex numbers $a = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2}), b = 1 + i\sqrt{3} \text{ and } c = \sqrt{2} + i\sqrt{2}$		
0.75	a) Verify that $b\overline{c} = a$ and deduce that $ac = 4b$		
0.5	b) Write the complex numbers b and c in trigonometric form.		
0.5	c) Deduce that $a=4\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)$		
	3) In the complex plane referred to an orthonormal direct coordinate system $(O, \vec{u}; \vec{v})$,		
	we consider the points B , C and D of respective affixes b , c and d such that $d = a^4$		
	Let z be the affix of a point M in the complex plane and z' the affix of the point M' image of		
	M by the rotation R with center O and angle $\frac{\pi}{12}$		
0.5	a) Verify that $z' = \frac{1}{4}az$		
0.25	b) Determine the image of the point C by the rotation R		
0.25	c) Determine the nature of the $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
0.75	d) Show that $a^4 = 128b$ and deduce that the points O, B and D are collinear.		

الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع				
3	الامنكان الوطني الموحد للبخالوريا - الدورة العادية 2020 - الموطنوع - مادة: الرياضيات - شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية				
4	(خيار إنجليزية)				
	Exercise 3: (4 points)				
	Consider the numerical function g defined on $]0; +\infty[$ by $g(x) = 2\sqrt{x} - 2 - \ln x$				
0.5	1) a) Show that for every x in $]0; +\infty[$; $g'(x) = \frac{\sqrt{x}-1}{x}$				
0.5	b) Show that g is increasing on $[1; +\infty[$;				
0.5	c) Deduce that for every X in $[1; +\infty[$; $0 \le \ln x \le 2\sqrt{x}$; (Notice that $2\sqrt{x} - 2 \le 2\sqrt{x}$)				
1	d) Show that for every x in $[1; +\infty[$: $0 \le \frac{(\ln x)^3}{x^2} \le \frac{8}{\sqrt{x}}$ therefore deduce $\lim_{x \to +\infty} \frac{(\ln x)^3}{x^2}$;				
0.75	2) a) Show that the function G defined by $G(x) = x \left(-1 + \frac{4}{3} \sqrt{x} - \ln x \right)$ is a primitive of the				
	function g on $]0;+\infty[$.				
0.75	b) Calculate the integral $\int_{1}^{4} g(x)dx$.				
	Problem: (7 points)				
	Consider the numerical function f defined on \Box by $f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)$				
	and (C) the curve of f in an orthonormal coordinate system $(O, \vec{i}; \vec{j})$ (unit: $2cm$)				
0.5	1) Show that $\lim_{x \to -\infty} f(x) = +\infty$ and $\lim_{x \to +\infty} f(x) = -\infty$				
0.5	2) a) Show that the line (Δ) of equation $y = -x + \frac{5}{2}$ is an asymptote to the curve (C) near $-\infty$.				
0.75	b) Solve the equation $e^{x-2}-4=0$, therefore show that the curve (C) is above (Δ) on the				
	interval $]-\infty, 2+\ln 4]$ and below (Δ) on the interval $[2+\ln 4, +\infty[$				
0.5	3) Show that $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$ and interpret geometrically the obtained result				
0.5	4) a) Show that for every x in \Box : $f'(x) = -(e^{x-2} - 1)^2$				
0.25	b) Set up the table of variations of the function f				
0.75	5) Calculate $f''(x)$ for every x in \square therefore show that $A(2,2)$ is an inflection point of the curve (C)				
0.5	6) Show that the equation $f(x) = 0$ admits an unique solution α such that $2 + \ln 3 < \alpha < 2 + \ln 4$				
	7) Sketch the line (Δ) and the curve (C) in the same coordinate system $(O,\vec{i};\vec{j})$				
1	(Take $\ln 2 \square 0.7$ and $\ln 3 \square 1.1$)				

الصفحة 4	1 NS 22E	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار إنجليزية)	
0.5	8)a) Show that the function f admits an inverse function f^{-1} defined on \square .		
0.75	b) Sketch in the same coordinate system $(O,\vec{i};\vec{j})$ the curve of the function f^{-1} (Notice that the		
	line (Δ) is perpendicular to the first bisector of coordinate system)		
0.5	c) Calculate $(f^{-1})'(2-\ln 3)$ (Notice that $f^{-1}(2-\ln 3) = 2+\ln 3$)		