GENERAL INSTRUCTIONS - ✓ The use of non- programmable calculator is allowed; - ✓ The exercises can be treated in the preferred order by the candidate; - ✓ The use of red color when writing solutions is to be avoided. ## COMPONENTS OF THE EXAM The exam consists of three exercises and a problem , independent of each other according to the fields as follows : | Exercise 1 | numerical sequences | 4 points | |------------|---|----------| | Exercise 2 | Complex numbers | 5 points | | Exercise 3 | Limits, differentiability and calculating integrals | 4 points | | Problem | Study of numerical function | 7 points | - \checkmark \overline{z} denotes the conjugate of the complex number z - ✓ In denotes the Napierian logarithm function | 7 . 11 | | | | |--------|--|--|--| | 2 | الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية | | | | 4 | - ماده: الرياضيات- شعبه العلوم النجريبية مسلك علوم الحياه والارض ومسلك العلوم الفيريانية (خيار إنجليزية) | | | | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | Exercise 1: (4 points) | | | | | Let (u_n) be the numerical sequence defined by $u_0 = \frac{3}{2}$ and $u_{n+1} = \frac{2u_n}{2u_n + 5}$ for every natural | | | | | number n | | | | 0.25 | 1) calculate u_1 | | | | 0.5 | 2) Show by induction that $u_n > 0$ for every natural number n | | | | | 3) a) Show that: $0 < u_{n+1} \le \frac{2}{5}u_n$; for every natural number n | | | | 1 | then deduce that, $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ for every natural number n . | | | | 0.5 | b) Calculate $\lim u_n$ | | | | | 4) we consider the numerical sequence (v_n) defined by $v_n = \frac{4u_n}{2u_n + 3}$ for every natural number n | | | | 0.75 | a) Show that (v_n) is a geometrical sequence of reason $\frac{2}{5}$ | | | | 1 | b) Determine v_n in terms of n therefore deduce u_n in terms of n for every natural number n . | | | | | Exercise 2: (5 points) | | | | | 1) In the set of complex numbers \Box we consider the equation (E) : $z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$ | | | | 0.5 | a) Verify that the discriminant of the equation (E) is $\Delta = -4(\sqrt{6} - \sqrt{2})^2$ | | | | 1 | b) Deduce the solutions of equation (E) . | | | | | 2) Let the complex numbers $a = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2}), b = 1 + i\sqrt{3} \text{ and } c = \sqrt{2} + i\sqrt{2}$ | | | | 0.75 | a) Verify that $b\overline{c} = a$ and deduce that $ac = 4b$ | | | | 0.5 | b) Write the complex numbers b and c in trigonometric form. | | | | 0.5 | c) Deduce that $a=4\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)$ | | | | | 3) In the complex plane referred to an orthonormal direct coordinate system $(O, \vec{u}; \vec{v})$, | | | | | we consider the points B , C and D of respective affixes b , c and d such that $d = a^4$ | | | | | Let z be the affix of a point M in the complex plane and z' the affix of the point M' image of | | | | | M by the rotation R with center O and angle $\frac{\pi}{12}$ | | | | 0.5 | a) Verify that $z' = \frac{1}{4}az$ | | | | 0.25 | b) Determine the image of the point C by the rotation R | | | | 0.25 | c) Determine the nature of the $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | | | | 0.75 | d) Show that $a^4 = 128b$ and deduce that the points O, B and D are collinear. | | | | الصفحة | الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع | | | | | |--------|---|--|--|--|--| | 3 | الامنكان الوطني الموحد للبخالوريا - الدورة العادية 2020 - الموطنوع - مادة: الرياضيات - شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية | | | | | | 4 | (خيار إنجليزية) | | | | | | | Exercise 3: (4 points) | | | | | | | Consider the numerical function g defined on $]0; +\infty[$ by $g(x) = 2\sqrt{x} - 2 - \ln x$ | | | | | | 0.5 | 1) a) Show that for every x in $]0; +\infty[$; $g'(x) = \frac{\sqrt{x}-1}{x}$ | | | | | | 0.5 | b) Show that g is increasing on $[1; +\infty[$; | | | | | | 0.5 | c) Deduce that for every X in $[1; +\infty[$; $0 \le \ln x \le 2\sqrt{x}$; (Notice that $2\sqrt{x} - 2 \le 2\sqrt{x}$) | | | | | | 1 | d) Show that for every x in $[1; +\infty[$: $0 \le \frac{(\ln x)^3}{x^2} \le \frac{8}{\sqrt{x}}$ therefore deduce $\lim_{x \to +\infty} \frac{(\ln x)^3}{x^2}$; | | | | | | 0.75 | 2) a) Show that the function G defined by $G(x) = x \left(-1 + \frac{4}{3} \sqrt{x} - \ln x \right)$ is a primitive of the | | | | | | | function g on $]0;+\infty[$. | | | | | | 0.75 | b) Calculate the integral $\int_{1}^{4} g(x)dx$. | | | | | | | Problem: (7 points) | | | | | | | Consider the numerical function f defined on \Box by $f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)$ | | | | | | | and (C) the curve of f in an orthonormal coordinate system $(O, \vec{i}; \vec{j})$ (unit: $2cm$) | | | | | | 0.5 | 1) Show that $\lim_{x \to -\infty} f(x) = +\infty$ and $\lim_{x \to +\infty} f(x) = -\infty$ | | | | | | 0.5 | 2) a) Show that the line (Δ) of equation $y = -x + \frac{5}{2}$ is an asymptote to the curve (C) near $-\infty$. | | | | | | 0.75 | b) Solve the equation $e^{x-2}-4=0$, therefore show that the curve (C) is above (Δ) on the | | | | | | | interval $]-\infty, 2+\ln 4]$ and below (Δ) on the interval $[2+\ln 4, +\infty[$ | | | | | | 0.5 | 3) Show that $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$ and interpret geometrically the obtained result | | | | | | 0.5 | 4) a) Show that for every x in \Box : $f'(x) = -(e^{x-2} - 1)^2$ | | | | | | 0.25 | b) Set up the table of variations of the function f | | | | | | 0.75 | 5) Calculate $f''(x)$ for every x in \square therefore show that $A(2,2)$ is an inflection point of the curve (C) | | | | | | 0.5 | 6) Show that the equation $f(x) = 0$ admits an unique solution α such that $2 + \ln 3 < \alpha < 2 + \ln 4$ | | | | | | | 7) Sketch the line (Δ) and the curve (C) in the same coordinate system $(O,\vec{i};\vec{j})$ | | | | | | 1 | (Take $\ln 2 \square 0.7$ and $\ln 3 \square 1.1$) | | | | | | | | | | | | | الصفحة 4 | 1 NS 22E | الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار إنجليزية) | | |----------|---|--|--| | 0.5 | 8)a) Show that the function f admits an inverse function f^{-1} defined on \square . | | | | 0.75 | b) Sketch in the same coordinate system $(O,\vec{i};\vec{j})$ the curve of the function f^{-1} (Notice that the | | | | | line (Δ) is perpendicular to the first bisector of coordinate system) | | | | 0.5 | c) Calculate $(f^{-1})'(2-\ln 3)$ (Notice that $f^{-1}(2-\ln 3) = 2+\ln 3$) | | | | | | | |