

الامتحان الوطني الموحد للبكالوريا المسالك الدولية - خيار إنجليزية الدورة العادية 2017 - الموضوع -

+.XHAE+ I NEYOEO +°E°П°0+ 1 80XE€ °1°E80 N8## X++83⊙8 ∧ 00°1° 88808 V °NNH°1° V JNO08

NS 22E

والتوجيه	والامتحانات	للتقويم	الوطني	المركز
----------	-------------	---------	--------	--------

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك العلوم الفيزيائية _ خيار إنجليزية	الشعبة أو المسلك

GENERAL INSTRUCTIONS

- The use of non-programmable calculator is allowed;
- The exercises can be treated in the preferred order by the candidate;
- The use of red color when drafting solutions is to be avoided.

COMPONENTS OF THE EXAM

- The exam consists of three exercises and a problem, independent of each other according to the fields as follows:

Exercise 1	Geometry in space.	3 points
Exercise 2	Calculating probabilities.	3 points
Exercise 3	Complex numbers.	3 points
Problem	Study of numerical function, calculating integrals and numerical sequences.	11 points

- Concerning the problem, In denotes the Napierian logarithm function.

0.5

0.75

0.25

0.75

0.75

1.5

Exercise 1 (3 points)

In the space referred to an orthonormal direct coordinate system $\left(0,\vec{i}\,,\vec{j}\,,\vec{k}\right)$, we consider the plane $\left(P\right)$ passing through the point $A\!\left(\,0\,,1\,,1\,\right)$ and having $\vec{u}\,\left(1,0,-1\right)$ as a normal vector and the sphere $\left(S\right)$ with the center $\Omega\!\left(\,0\,,1\,,-1\,\right)$ and the radius $\sqrt{2}$

- 1) a) Show that x-z+1=0 is a cartesian equation of the plane (P)
 - b) Show that the plane (P) is tangent to the sphere (S) and verify that the plane (P) Intersects the sphere (S) at the point B(-1,1,0)
- 2) a) Determine a parametric equations of the line (Δ) passing through the point A and perpendicular to the plane (P)
 - b) Show that the line (Δ) is tangent to the sphere (S) at the point C(1,1,0)
- 3) Show that $\overrightarrow{OC} \wedge \overrightarrow{OB} = 2\overrightarrow{k}$ and then deduce the area of the triangle OCB

Exercise 2 (3 points)

An urn contains eight balls, indistinguishable by touch, each carrying a number, as shown in the figure beside.

We draw, simultaneously and randomly, three balls from the urn.

- 1) Let A be the event: « Among the three drawn balls , no ball carries the number 0 » and B the event: «The product of the numbers carried by the three drawn balls is equal to 8 » Show that $p(A) = \frac{5}{14}$ and that $p(B) = \frac{1}{7}$
- 2) Let X be the random variable that associates to each draw the product of the numbers carried by the three drawn balls.
- 0.5 a) Show that $p(X = 16) = \frac{3}{28}$
 - b) The table beside concerns the law of the probability of the random variable $\, X \,$

\mathcal{X}_{i}	0	4	8	16
$p(X=x_i)$				$\frac{3}{28}$

Copy the table on your copy and complete it by justifying each answer.

0.25

0.5

0.5

0.75

0.5

0.5

1

0.5

0.75

Exercise 3 (3 points)

We consider the complex numbers a and b such that $a = \sqrt{3} + i$ and $b = \sqrt{3} - 1 + (\sqrt{3} + 1)i$

- 1) a) Verify that b = (1 + i)a
 - b) Deduce that $|b| = 2\sqrt{2}$ and that $\arg b = \frac{5\pi}{12}$ [2π]
 - c) Deduce from the previous that $\cos \frac{5\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$
- 2) The complex plane is referred to an orthonormal direct coordinate system (O, \vec{u}, \vec{v}) We consider the points A and B of respective affixes a and b and the point C of affix c such that $c = -1 + i\sqrt{3}$
 - a) Verify that c = ia and then deduce that OA = OC and that $\left(\overline{\overrightarrow{OA},\overrightarrow{OC}}\right) \equiv \frac{\pi}{2} \left[2\pi\right]$
 - b) Show that the point B is the image of the point A by the translation with vector \overrightarrow{OC}
 - c) Deduce that the quadrilateral *OABC* is a square.

Problem (11 points)

- I- Let g be the numerical function defined on the interval $]0,+\infty[$ by: $g(x)=x^2+x-2+2\ln x$
- 0.25 1) Verify that g(1) = 0
 - 2) From the table of variations of the function $\,g\,$ below :

X	0 +∞
g'(x)	+
g(x)	

Show that $g(x) \le 0$ for every x in the interval]0,1] and that $g(x) \ge 0$ for every x in the interval $[1,+\infty[$

II-We consider the numerical function f defined on the interval $]0,+\infty[$ by: $f(x)=x+\left(1-\frac{2}{x}\right)\ln x$

Let $\left(C\right)$ be the curve of f in an orthonormal coordinate system $\left(O, \vec{i}, \vec{j}\right)$ (unit :1cm)

- 1) Show that $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$ and interpret geometrically the obtained result.
- **0.25 2) a) Show that** $\lim_{x \to 0} f(x) = +\infty$
 - b) Show that the line (D) of equation y=x is an asymptotic direction of the curve (C) at $+\infty$

الصفحة	I
4	
4	

0.75

1

0.25

0.5

0.5

0.5

0.5

NS22E

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - الموضوع - مادة: الرياضيات - مسلك العلوم الفيزيائية - خيار إنجليزية

- 1 3) a) Show that $f'(x) = \frac{g(x)}{x^2}$ for every x in the interval $]0, +\infty[$
- b) Show that f is decreasing on the interval]0 , 1] and increasing on the interval [1 , $+\infty[$
- 0.25 c) Set up the table of variations of the function f on the interval $]0,+\infty[$
- 0.5 4) a) Solve in the interval $]0,+\infty[$ the equation $\left(1-\frac{2}{x}\right)\ln x=0$
- b) Deduce that the $\mathrm{curve}(C)$ intersects the $\mathrm{line}(D)$ at two points, which the coordinates must be determined.
 - c) Show that $f(x) \le x$ for every x in the interval $\begin{bmatrix} 1 & , & 2 \end{bmatrix}$ and then deduce the relative position of the curve (C) and the line (D) on the interval $\begin{bmatrix} 1 & , & 2 \end{bmatrix}$
 - 5) Sketch, the line (D) and the curve (C) in the same system coordinate (O,\vec{i},\vec{j}) (We admit that the curve (C) has a unique inflection point wich abscissa is between 2,4 and 2,5)
- 0.5 6) a) Show that $\int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2}$
 - b) Show that the function $H: x \mapsto 2\ln x x$ is a primitive of the function $h: x \mapsto \frac{2}{x} 1$ on the interval $]0, +\infty[$
 - c) Using an integration by parts, show that $\int_{1}^{2} \left(\frac{2}{x} 1\right) \ln x \, dx = \left(1 \ln 2\right)^{2}$
 - d) Calculate, in cm^2 , the area enclosed between the curve (C), the line (D) and the lines of equations x=1 and x=2
 - III- We consider the numerical sequence (u_n) defined by :

$$u_0 = \sqrt{3}$$
 and $u_{n+1} = f(u_n)$ for every natural number n

- **1)** Show by induction that $1 \le u_n \le 2$ for every natural number n
- 2) Show that the sequence (u_n) is decreasing (you can use the result of the question II-4) c))
- 0.75 3) Deduce that the sequence (u_n) is convergent and determine its limit.