

GENERAL INSTRUCTIONS

- **✓** The use of non- programmable calculator is allowed;
- ✓ The exercises can be treated in the preferred order by the candidate;
- \checkmark The use of red color when writing solutions is to be avoided.

COMPONENTS OF THE EXAM

 \checkmark The exam consists of three exercises and a problem , independent of each other according to the fields as follows:

Exercise 1	numerical sequences	2 points
Exercise 2	Complex numbers	5 points
Exercise 3	Study of numerical function and Calculating integrals	4 points
Problem	Study of numerical function, and numerical sequences	9 points

- \checkmark In denotes the Napierian logarithm function
- \checkmark \overline{z} denotes the conjugate of the complex number z and |z| it's module

الصفحة				
2	RS 22E	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 – الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية		
4		(خيار إنجليزية)		
	Exercise 1 : (2 points)			
	Consider the numerical sequence (u_n) defined by $u_0 = 1$ and $u_{n+1} = \frac{3u_n - 8}{2u_n - 5}$ for every natural			
	number n			
0.5	1) Show that $u_n < 2$ for every natural number n			
	2) Consider $v_n = \frac{u_n - 3}{u_n - 2}$ for every natural number n			
0.5	a) Show that (v_n) is an arithmetical sequence of reason 2			
0.75	b) write v_n in terms of n then deduce u_n in terms of n			
0.25	c) calculate the limit of the sequence (u_n)			
	Exercise	2 : (5 points)		
0.75	1) Solve in the set of complex numbers \Box the equation : $z^2 - \sqrt{2}z + 1 = 0$			
	2) Let	$a = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$		
0.75	a) Write the number a in the trigonometrical form and deduce that a^{2020} is a real number			
0.5	b) Let 1	b) Let the complex number $b = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}$. Prove that $b^2 = a$		
	3) In the complex plane referred to an orthonormal direct coordinate system $(O, ec{u}, ec{v})$,			
	We consider the points A , B and C of respective affixes a , b and c such $c=1$. Let R be			
	the rotation with center O and angle $\frac{\pi}{8}$. The point M 'of affix z ' is the image of the point			
	M of a	offix z by the rotation R .		
0.25	a) Verif	$\mathbf{z'} = b z$		
	b) Det	termine the image of the point C by the rotation R , and $$ show that A is the image of		
0.5	the poir	at B by R .		
0.75	4) a) Sh	now that $ a-b = b-c $ and deduce the nature of the triangle ABC		
0.5	b) Dete	rmine a measure of the oriented angle $(\overrightarrow{BA}, \ \overrightarrow{BC})$		
	5) Cons	ider T the translation with vector \vec{u} , and let D be the image of the point A by T.		
0.25	a) '	Verify that the affix of the point D is $b^2 + 1$		
0.75	b) \$	Show that $\frac{b^2+1}{b} = b + \bar{b}$, therefore deduce that the points O , B and D are colinear.		

الصفحة		الاحتجاز المعاز المعادر المعارض المعار	
3	RS 22E	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية	
4		(خيار إنجليزية)	
	Exercise 3 : (4 points)		
	Let <i>u</i> be the numerical function defined on \Box by $u(x) = e^x - 2x + 2 - 3e^{-x}$		
0.5	1) a) Show that for every x on \square : $u'(x) = \frac{(e^x - 1)^2 + 2}{e^x}$		
0.25	b) Set up the table of variations of u (the calculus of limits are not required)		
0.5	c) Deduce the sign of the function u on \square (Notice that $u(0) = 0$)		
	2) Let v be the numerical function defined on \Box by $v(x) = e^{2x} - 2xe^x + 2e^x - 3$		
0.5	a)	verify that for every x on u $v(x) = e^x u(x)$	
0.5	b	Deduce the sign of the function V on \square	
0.5	3) a) Show that the function W defined by $W(x) = \frac{1}{2}e^{2x} + (4-2x)e^x - 3x$ is a primitive of the function V on \square		
0.5	b) calculate $\int_0^2 v(x) dx$		
0.75	c)	Show that $\frac{9}{2}$ is the absolute minima of the function W on \square	
	Problem : (9 points)		
	I.]	Let g be the numerical function defined on $]0,+\infty[$ by $: g(x) = e^{1-x} + \frac{1}{x} - 2$	
0.5	1) Show	that $g'(x) < 0$, for every x in $]0, +\infty[$	
0.5	2) Dedu	ace the table of sign of $g(x)$ on the interval $]0,+\infty[$; (Notice that $g(1)=0$)	
	II.]	Let f be the numerical function defined on $]0,+\infty[$ by :	
		$f(x) = (1-x)e^{1-x} - x^2 + 5x - 3 - 2\ln x$	
	and (C)	its representative curve in an orthonormal coordinate system (O,\vec{i},\vec{j}) (unit: 2 cm)	
0.5		that $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$, then interpret geometrically the result	
0.5		$\lim_{x \to +\infty} f(x) = -\infty$	
0.75	b) Show	with that $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$, then interpret geometrically the result	
1	3) a) Sh	ow that for all x in $]0,+\infty[$, $f'(x)=(x-2)g(x)$	
0.75	b) Sho	w that the function f is decreasing on $]0,1]$ and on $[2,+\infty[$ and it's increasing on $[1,2]$	
0.25	c) Set up the table of variations of the function f on $]0,+\infty[$, (take $f(2) \square 1,25$)		

