GENERAL INSTRUCTIONS - **✓** The use of non- programmable calculator is allowed; - ✓ The exercises can be treated in the preferred order by the candidate; - \checkmark The use of red color when writing solutions is to be avoided. ## **COMPONENTS OF THE EXAM** \checkmark The exam consists of three exercises and a problem , independent of each other according to the fields as follows: | Exercise 1 | numerical sequences | 2 points | |------------|---|----------| | Exercise 2 | Complex numbers | 5 points | | Exercise 3 | Study of numerical function and Calculating integrals | 4 points | | Problem | Study of numerical function, and numerical sequences | 9 points | - \checkmark In denotes the Napierian logarithm function - \checkmark \overline{z} denotes the conjugate of the complex number z and |z| it's module | الصفحة | | | | | |--------|--|--|--|--| | 2 | RS 22E | الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 – الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية | | | | 4 | | (خيار إنجليزية) | | | | | Exercise 1 : (2 points) | | | | | | Consider the numerical sequence (u_n) defined by $u_0 = 1$ and $u_{n+1} = \frac{3u_n - 8}{2u_n - 5}$ for every natural | | | | | | number n | | | | | 0.5 | 1) Show that $u_n < 2$ for every natural number n | | | | | | 2) Consider $v_n = \frac{u_n - 3}{u_n - 2}$ for every natural number n | | | | | 0.5 | a) Show that (v_n) is an arithmetical sequence of reason 2 | | | | | 0.75 | b) write v_n in terms of n then deduce u_n in terms of n | | | | | 0.25 | c) calculate the limit of the sequence (u_n) | | | | | | Exercise | 2 : (5 points) | | | | 0.75 | 1) Solve in the set of complex numbers \Box the equation : $z^2 - \sqrt{2}z + 1 = 0$ | | | | | | 2) Let | $a = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ | | | | 0.75 | a) Write the number a in the trigonometrical form and deduce that a^{2020} is a real number | | | | | 0.5 | b) Let 1 | b) Let the complex number $b = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}$. Prove that $b^2 = a$ | | | | | 3) In the complex plane referred to an orthonormal direct coordinate system $(O, ec{u}, ec{v})$, | | | | | | We consider the points A , B and C of respective affixes a , b and c such $c=1$. Let R be | | | | | | the rotation with center O and angle $\frac{\pi}{8}$. The point M 'of affix z ' is the image of the point | | | | | | M of a | offix z by the rotation R . | | | | 0.25 | a) Verif | $\mathbf{z'} = b z$ | | | | | b) Det | termine the image of the point C by the rotation R , and $$ show that A is the image of | | | | 0.5 | the poir | at B by R . | | | | 0.75 | 4) a) Sh | now that $ a-b = b-c $ and deduce the nature of the triangle ABC | | | | 0.5 | b) Dete | rmine a measure of the oriented angle $(\overrightarrow{BA}, \ \overrightarrow{BC})$ | | | | | 5) Cons | ider T the translation with vector \vec{u} , and let D be the image of the point A by T. | | | | 0.25 | a) ' | Verify that the affix of the point D is $b^2 + 1$ | | | | 0.75 | b) \$ | Show that $\frac{b^2+1}{b} = b + \bar{b}$, therefore deduce that the points O , B and D are colinear. | | | | الصفحة | | الاحتجاز المعاز المعادر المعارض المعار | | |--------|---|--|--| | 3 | RS 22E | الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية | | | 4 | | (خيار إنجليزية) | | | | Exercise 3 : (4 points) | | | | | Let <i>u</i> be the numerical function defined on \Box by $u(x) = e^x - 2x + 2 - 3e^{-x}$ | | | | 0.5 | 1) a) Show that for every x on \square : $u'(x) = \frac{(e^x - 1)^2 + 2}{e^x}$ | | | | 0.25 | b) Set up the table of variations of u (the calculus of limits are not required) | | | | 0.5 | c) Deduce the sign of the function u on \square (Notice that $u(0) = 0$) | | | | | 2) Let v be the numerical function defined on \Box by $v(x) = e^{2x} - 2xe^x + 2e^x - 3$ | | | | 0.5 | a) | verify that for every x on u $v(x) = e^x u(x)$ | | | 0.5 | b | Deduce the sign of the function V on \square | | | 0.5 | 3) a) Show that the function W defined by $W(x) = \frac{1}{2}e^{2x} + (4-2x)e^x - 3x$ is a primitive of the function V on \square | | | | 0.5 | b) calculate $\int_0^2 v(x) dx$ | | | | 0.75 | c) | Show that $\frac{9}{2}$ is the absolute minima of the function W on \square | | | | Problem : (9 points) | | | | | I.] | Let g be the numerical function defined on $]0,+\infty[$ by $: g(x) = e^{1-x} + \frac{1}{x} - 2$ | | | 0.5 | 1) Show | that $g'(x) < 0$, for every x in $]0, +\infty[$ | | | 0.5 | 2) Dedu | ace the table of sign of $g(x)$ on the interval $]0,+\infty[$; (Notice that $g(1)=0$) | | | | II.] | Let f be the numerical function defined on $]0,+\infty[$ by : | | | | | $f(x) = (1-x)e^{1-x} - x^2 + 5x - 3 - 2\ln x$ | | | | and (C) | its representative curve in an orthonormal coordinate system (O,\vec{i},\vec{j}) (unit: 2 cm) | | | 0.5 | | that $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$, then interpret geometrically the result | | | 0.5 | | $\lim_{x \to +\infty} f(x) = -\infty$ | | | 0.75 | b) Show | with that $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$, then interpret geometrically the result | | | 1 | 3) a) Sh | ow that for all x in $]0,+\infty[$, $f'(x)=(x-2)g(x)$ | | | 0.75 | b) Sho | w that the function f is decreasing on $]0,1]$ and on $[2,+\infty[$ and it's increasing on $[1,2]$ | | | 0.25 | c) Set up the table of variations of the function f on $]0,+\infty[$, (take $f(2) \square 1,25$) | | | | | | | |