Université Moulay-Ismail

FACULTÉ DES SCIENCES ET TECHNIQUES ERRACHIDIA

DÉPARTEMENT DE MATHÉMATIQUES

Année Universitaire: 2020/2021

M S5, Module: M510

Responsable: Belhadj. Karim

Serie N3.

Exercice 1. 1. Soient $\alpha, \beta \in \mathbb{R}^+$ tq: $\alpha + \beta = 1$. Montrer que pour tout $u, v \in \mathbb{R}^+$, on a: $u^{\alpha}v^{\beta} \leq \alpha u + \beta v$.

- 2. Montrer que pour $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, on a: $\sum_{i=1}^{i=n} |x_i| |y_i| \le (\sum_{i=1}^{i=n} |x_i|^p)^{\frac{1}{p}} \cdot (\sum_{i=1}^{i=n} |y_i|^q)^{\frac{1}{q}}$ sachant que $\frac{1}{p} + \frac{1}{q} = 1$.
- 3. Déduire que $x \mapsto ||x||_p = (\sum_{i=1}^{i=n} |x_i|^p)^{\frac{1}{p}}$ est une norme sur \mathbb{R}^n .

Exercice 2. On rappelle que si E est un \mathbb{K} e.v.n, A et B deux parties non vides de E et λ une partie de \mathbb{K} , alors $A + B = \{a + b, a \in A, b \in B\}$ et si $A = \{a\}$ on note a + B. De $m\hat{e}me \lambda A = \{\lambda x, \lambda \in \lambda, x \in A\}$, $si \lambda = \{\lambda\}$ on note λA .

- 1. Soient $a, b \in E$ et $\lambda \in \mathbb{K}$, montrer que $b + \lambda B(a, r) = B(b + \lambda a, |\lambda|r)$ et $b + \lambda B'(a, r) = B'(b + \lambda a, |\lambda|r)$.
- 2. Montrer que $\overline{a+B} = a + \overline{B}$, $\widehat{a+A} = a + \overset{\circ}{A}$ et $\overline{\lambda A} = \lambda \overline{A}$.
- 3. Soient $a \in E$ et r > 0. Montrer que $\overline{B(a,r)} = B'(a,r)$ et $\widehat{B'(a,r)} = B(a,r)$.

Exercice 3. Soient A et B deux parties non vides d'un e.v.n E.

- 1. Montrer que si A ou B est ouverte alors A + B est ouverte.
- 2. Montrer que si A et B sont connexes, alors A+B est connexe.
- 3. Montrer que si A et B sont compacts, alors A + B est compact.
- 4. Montrer que si A et B sont connexes par arcs, alors $A \times B$ est connexe par arcs.
- 5. Déduire que si A et B sont connexes par arcs, alors A+B est connexe par arcs.
- 6. Montrer que si A est convexe, alors A est connexe.

Exercice 4. Soient E, F deux \mathbb{R} e.v.n et $f: E \to F$ une application vérifiant: f(x+y) = f(x) + f(y) pour tout $x, y \in E$. De plus f est bornée sur la boule unitée fermée.

- 1. Montrer que pour tout $r \in \mathbb{Q}$, on a: f(rx) = rf(x).
- 2. Montrer que f est continue en 0.
- 3. Montrer que f est continue sur E.
- 4. Déduire que f est linéaire.

Exercice 5. Soit E un espace vectoriel normé sur \mathbb{C} . On désigne par: $B'(0,1) = \{x \in E; ||x|| \leq 1\}$, la boule unitée fermée de centre 0 et de rayon 1. Soit $F \subset E$ un sous espace vectoriel fermé de E. Pour $x \in E$, on pose: $d(x,F) = \inf_{y \in F} ||x-y||$.

- 1. Montrer que $\forall x \in E$, on a: $0 \le d(x, F) \le ||x||$.
- 2. Montrer que $d(x, F) = 0 \Leftrightarrow x \in F$.
- 3. (a) Montrer que $\forall x, x' \in E, \lambda \in \mathbb{C}, y \in F$ on a:

$$d(\lambda x, F) = |\lambda| d(x, F),$$

$$d(x - y, F) = d(x, F),$$

- (b) Montrer que l'application $x \mapsto d(x, F)$ est uniformément continue dans E.
- 4. (a) Soit $x \in B'(0,1)$. On pose $\alpha = d(x,F)$ et on suppose que $\alpha > 0$, soit de plus $\varepsilon > 0$. Montrer qu'il existe $y \in F$ tel que: $\alpha \le ||x-y|| < \alpha(1+\varepsilon)$.

(b) Soit
$$x' = \frac{x - y}{||x - y||}$$
, montrer que $d(x', F) > \frac{1}{1 + \varepsilon}$.

- 5. Montrer que si $F \neq E$, alors $\sup_{x \in B'(0,1)} d(x,F) = 1$.
- 6. Montrer que si $F \neq E$ et E est de dimension finie, alors il existe $x_0 \in B'(0,1)$ tel que $d(x_0,F)=1$.

Belhadj Karim